关于我们

质量为本、客户为根、勇于拼搏、务实创新

< 返回新闻公共列表

怎么办?机器带来的新型知识我们无法理解

发布时间:2017-05-26 16:37:22

怎么办?机器带来的新型知识我们无法理解

 

以下是文章主要内容:

“海量数据的可用性,以及用来分析这些数据的统计工具,带来了全新的理解世界的方式。相互关系取代因果关系,即便没有一致的模型、统一的理论或者机械论解释,科学也能够取得进展。”

《连线》前总编辑克里斯·安德森(Chris Anderson)在2008年如是写道。当时这引发了一番激烈的争论。例如,有篇刊登在分子生物学期刊的文章问道,“……如果我们停止去寻找模型和假说,那我们所做的还是科学吗?答案显然应该是‘不。’”

但如今——与安德森的文章相隔还不到10年时间——该争议听起来很怪异。在我们全新的强大的网络化硬件的助力下,计算机软件的种种进展正使得计算机不仅仅能够不用模型(表达系统元素如何相互影响的规则集)就能运作,还能够生成自己的模型,尽管那些模型看上去可能不大像是人类创造的。随着各家科技公司纷纷“以机器学习为先”,这甚至在变成标准的方式。

我们正日益依靠能够自行创造出模型来得出结论的机器,但那些模型往往超出人类的理解范畴,会以不同于我们的方式来“思考”这个世界。

但这也带来了代价。如此引用异类智能,正引发我们对长久以来的西方传统中植入的假设思维的疑问。我们原来认为知识关乎在混乱中找出秩序来。我们原来认为知识关乎简化这个世界。现在看来我们似乎是错误的。认识这个世界或许需要我们放弃去理解它。

超出人类理解范畴的模型

在有关机器学习的系列文章中,亚当·盖特吉(Adam Geitgey)解释了基础内容,从中可以看出这种新式的“思维”:

“有泛型算法能够告诉你一组数据有趣的地方,而且你完全不必针对问题编写任何的自定义代码。你给泛型算法注入数据,而不是编写代码,然后它就会根据那些数据建立自己的逻辑。”

举例来说,你给机器学习系统提供数千个潦草的手写“8”扫描照,然后它会学习在新的扫描照中辨认“8”。它并不是通过得出我们所知道的规则(比如“8由上下两个圆圈堆叠而成”)来辨认,而是通过寻找以数字矩阵呈现的复杂的暗像素模式——对于人类来说这项任务颇为艰巨。农业中最近也有个例子:同样的数字模型技术让计算机懂得了如何去将黄瓜分类。

接着,你可以通过打造用软件模拟人脑处理信号的过程的人工神经网络,来让机器学习更进一步。不规则网络的节点会根据从与其连接的节点而来的数据进行开启或者关闭;那些连接有不同的权重,因此有的连接开启相邻节点的概率会高于其它的连接。尽管人工智能网络可追溯到1950年代,但它们现在才形成气候,这得益于计算性能、存储和数字运算的进步。这一日益复杂的计算机科学分支可能会引发这样的结果:经过如此多层神经网络的作用,深度学习在如此多不同的条件下根据如此多不同的变量得出大量的结果,人类会无法理解计算机自行打造的模型。

但这种模式是可行的。谷歌的AlphaGo项目正是这么击败世界排名第三的围棋大师的。给机器设计程序玩围棋可比让它去给黄瓜分类要艰巨得多,毕竟围棋潜在的变化数达到10的350次方;国际象棋潜在的变化数达到10的123次方,宇宙中有10的80次方个原子。谷歌的硬件配置也不算特别惊人:它只有48个处理器,外加8个图形处理器,这些刚好足够进行所需的运算。

AlphaGo接受了发生于人类棋手16万盘棋3000万步棋的训练,期间需要注意人类选手所采取的招式,以及理解什么才算合规的下法,以及其它的基本规则。通过使用深度学习技术来定义神经网络层识别出的模式,该系统训练自己理解怎么下获胜概率最高。

虽然AlphaGo已经证明自己是世界级棋手,但它并不能说出让人类棋手能够学习的实际原理。该程序并不是通过开发一般性的玩法规则来运作,而是通过分析特定棋局下怎么下成功概率最高。相比之下,IBM玩国际象棋的Deep Blue计算机则编入了一些有关好招数的一般性原则。正如克里斯托弗·科克(Christof Koch)在发表在《科学美国人》(Scientific American)的文章中所说的,AlphaGo的智能依靠的是其模拟神经元之间的数十亿个连接。它创造出的模型让它能够做出决策,但那个模型极其复杂,而且是有条件的。其巨量的应变计划带来的结果除了战胜人类之外,别无其他。


/template/Home/Shiwaix2/PC/Static